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The mechanical behaviour of cross-ply reinforced shells of revolution when they are non-axisymmetrically heated is considered 
in a three-dimensional formulation, and all the components of the stress-strain state are obtained in full. The method of finite 
elements is used for a numerical solution of the problem. The effects of anisotropy in a double-layer boroepoxide cylindrical 
shell under conditions of variable heating in a circumferential direction are investigated. 0 2004 Elsevier Ltd. All rights reserved. 

The three-dimensional form of the stress-strain state of thin non-orthogonal reinforced multilayered 
shells was established in the Eighties of the past century and was subject to numerous investigations 
by different, primarily numerical, methods, which are quite fully represented in the analytical review 
given in [l]. It has been shown that the presence of components of the stresses and strains, not inherent 
in orthotropic shells [2], distributed in complex ways and of vital importance, is determined here not 
so much by the thickness or large variability of the loads, but by the anisotropy of the physical-mechanical 
properties of the layers rigidly fastened in a single continuum of layers [3]. Even for free heating of 
a plane cross-ply reinforced strip a complex stressed state occurs in it, which is accompanied by the 
development of considerable strains of tangential shear and curvilinear warping of the cross-sections 
[41. 

The fact that it is necessary to take into account arbitrary anisotropy in three-dimensional problems 
of the thermoelasticity of reinforced shells considerably complicates both the problem of obtaining 
numerical solutions and of analysing the stress-strain state. The first attempts at such an analysis, taking 
into account fairly general properties of anisotropy (non-orthotropy), were undertaken for the special 
case of the axisymmetric heating of shells of revolution [5, 61. 

Using the Hamilton-Ostrogradskii principle and certain assumptions regarding the preliminary 
deformed body, the most general variational formulation and finite-element relations of three- 
dimensional problems of the thermoelasticity of multilayer anisotropic shells of revolution with an initial 
geometrically non-linear deformation were obtained in [7]. A detailed analysis of the equations obtained 
in [7] was carried out in [S] for a numerical solution of the linear non-axisymmetric problem of 
thermoelasticity, and it was pointed out that even when there is a single harmonic component of the 
temperature field T = T,[“] cosn0 (or T = T,[“] sin&) the stress-strain state generated in an anisotropic 
shell is equivalent to the stress-strain state which arises when the shell is loaded with body forces with 
the simultaneous presence of cosine and since components. 

However, a quantitative three-dimensional analysis of the effect of anisotropy on the mechanical 
behaviour of shells of revolution in the case of non-axisymmetric heating, with the determination of 
all the components of the stress-strain state in full, has not yet been carried out. The present research 
was undertaken with the aim of filling this gap and of continuing the cycle of investigations, carried out 
in [3, 7, 81 for force loading, of the stability and free vibrations of cross-ply reinforced shells. Here we 
also remove the inaccuracies in [5, 61 when realizing the numerical algorithms for solving the 
axisymmetric problem of thermoelasticity. We analyse the effects of anisotropy using the example of 
the stress-strain state of a non-axisymmetrically heated double-layer cross-ply reinforced boroepoxide 
cylindrical shell [3, 6, S-lo]. 
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1. THE RELATIONS OF THERMOELASTICITY FOR A MULTILAYER 
CROSS-PLY REINFORCED SHELL 

In cylindrical coordinates r, 0, z we consider a shell of revolution, bounded by a surface S and having 
a volume I/ [7,8]. The shell is free from surface loads and external body forces. Assuming the increment 
of temperature with respect to the initial state To is known and constant with time, we will assume the 
deformation of the shell to be isothermal, in which case the stresses do not depend on the prehistory 
of the loading [ll]. 

It is most convenient to analyse the stress-strain state in a system of coordinates a,, 02, 03, connected 
with the internal surface of the shell, where al and a2 are the meridional and circumferential coordinates, 
while the a3 axis is directed along the outer normal to al and a2. The shell consists of rigidly connected 
unidirectional reinforced layers, arranged in such a way that the directions of the reinforcement make 
angles (-l)k+l ywith the tangent to the meridian (k is the number of the layer measured from the internal 
surface). In axes connected with the direction of the reinforcement, each layer is assumed to be macro- 
scopically transversely isotropic. The reduced mechanical characteristics of a layer are determined 
from well-known averaging formulae [12], and the coefficients of thermal expansion are calculated 
with the same accuracy using well-known relations [5]. Taking the form of the reinforcement into 
account, such a layer, in the connected system of coordinates al, 02, cr3, possesses the properties of 
cylindrical anisotropy with a single plane of elastic symmetry, tangential to the surface, equivalent to 
the coordinate surface. The material of the layers corresponds to the physical Duhamel-Neumann 
relations 

&’ = pp’ _ qyk’ (1.1) 

represented in matrix form. Here o = [o 11, 022, 033, 023, 0~3, 0121~ is the stress vector, Cd = C,(i, 
j = 1,2, . . . ,6) is the stiffness matrix of the generalized Hooke’s law (it contains 13 different non-zero 
components), c = [&ii, . . . , ci21T is the strain vector, T is the increment of the temperature with respect 
to the initial state To (a scalar field), and p is the temperature stress vector for constrained deformations, 
equal to p = Co, where a = [ail, a22, a33, 0, 0, ai21T is the vector of thermal expansions and shears. 

The following equations hold for the non-zero elasticity constants and components of the vector a 
of the kth and (k + l)th layers 

i= 1,2 ,..., 6; j,q= 1,2,3 
(k) 

c45 = 
(k+ 1) 

-c45 f 
(k) (k+ 1) 

a12 = -a12 

The following conditions of continuity hold on the boundary of the layers 

Jk) = p+l) o!k’ = #+I) (k) (k+ 1) 
1 I ’ 13 r3 ’ Epl = Epl 

i = 1,2,3; p,l = 1,2 

(l-2) 

(1.3) 

If we change to a cylindrical system of coordinates, the layers considered will possess anisotropy of 
general form, and instead of (1.1) for 

CJ = b,, qje, 6,, q)p e,* q& E = b,, * * *, E,slT 

we will have 
& = B(UeW _ TpQ’, p(k) = B’k’&’ 

(1.4) 

The components of the vector E are determined from well-known relations [ 111, the stiffness matrix 
B has 21 non-zero components, and a = [a,, . . . , ~1~. 

The characteristics of a cylindrical shell, as a special case, are given by 

Bi;) = Biick+ l), B;;’ = Bx+“, Bik,) = -B$+l), (k) (k+l’ B56 = -46 
i = 1,2, . . . . 6; j,q = 1,2,3 
$) = #+I) W 

rr rr 1 %I, = -%, (k+l)(rr @xl .+ 22) (1.5) 
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The remaining components of the stiffness matrix B and the vector of the thermal expansions and 
shears a of the physical Duhamel-Neumann relations (1.4) are zero. 

The differences in the signs of the components CjhG = 1, 2, 3) Cd5 and al2 (1.2) of adjacent layer 
gives rise to effects of non-uniformity of the stress and strain fields. Effects connected with the anisotropy 
for shells of different thickness manifest themselves most strongly when there is a small number of layers, 
and less so when the number of layers is increased [9]. 

2. THE FINITE-ELEMENT SOLUTION OF THE PROBLEM OF 
THE NON-AXISYMMETRIC DEFORMATION OF A SHELL OF 

REVOLUTION WHEN HEATED 

A numerical solution of the three-dimensional problem of the theory of elasticity for multilayer 
anisotropic shells of revolution for non-axisymmetric force deformation was obtained for the first time 
by Grigolyuk and Nosatenko [3]. Here we will use the special case of the linear equations of static 
equilibrium [7, 81, which follow from the variational principle of the minimum of the total energy for 
the isothermal state of an arbitrarily heated elastic body (unloaded by surface and body forces). The 
stress-strain state of cross-ply reinforced shells is characterized by the displacements u,(r, 8, z) (a = 
r, 0, z), the vectors of the linear deformations ~(r, 8, z) and the stresses o(r, 8, z), comprised of the 
components of the corresponding tensors [ 111 and connected by the Duhamel-Neumann relations (1.4). 

The components u,(a = r, 0, z), E and o, and also the increment of the temperature T are represented 
in the form of Fourier series in the circumferential coordinate 

- [nl (a=r,&z), &= CE (E ti 0) (2-l) 
n=O 

T = 2 (TrlcOSne + T~lSinne) 

n=O 
(2.2) 

In relations (2.1) 
Jnl 

r = d?r, z)cosne+w~‘(r,z)sinne (r * z) 
[nl 

ue = ul;‘(r, z)sinnO + wI;‘(r, z)cos& 
(2.3) 

The components of the vectors olnl and E[‘] have the form 

#I 
rr = z~l(r,z)cosne+rE:l(r,z)sinne (rr * 00 # zz e rz) 
InI 

% = 71;,l(r, z)sinnO + tI;,‘(r, z)cosd (C)z * r-0) 

P-4 

In the case of an orthotropic shell, in which, for each layer, the directions of orthotropy coincide 
with the curvilinear coordinates al, a2 03, from expressions (1.4) we obtain the equations 

p = Be’“‘-TF’P, tLnl = Bg[“‘-Ty]p 

If anisotropy of a more general form than curvilinear orthotropy is taken into account, equations of 
the type (2.5) are impossible, since the components z and t are related by Eqs (1.4) both with he 
components e and g. 

The problem is solved by the finite-element method with linear local approximations of the expansion 
coefficients (2.3) ui (r, z) and rvt(r, z) (a = r, 8, z) in triangles Q (here and below the subscript e denotes 
membership of the eth finite element, and we will omit the superscript n, implying that all the relations 
are referred to the harmonic IE of expansions (2.1)-(2.4)). To calculate the vector of the thermal stresses 
we will assume that the temperature field (the coefficients of expansion (2.2)) are specified by the values 
at the nodes of a discrete model; in the region r, z E Q. we take the linear approximation of the 
temperature field. As was shown in [5], this ensures that the calculated models for the force and thermal 
loading agree. 
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The problem of finding the stress-strain state for the case of non-axisymmetric heating reduces to 
the linear algebraic relations [8] 

KLU = QT P-6) 

with subsequent calculation of the strains E and stresses o at the nodes of the discrete model and their 
conversion to the coordinates al, 02, 03. 

In relations (2.6) 

u = [II;, w;, vi, w;, vi, w;, v;, . . ., wz ] Np T (dimU = 6NJ 

[KLJ = 
a2 Ne 1 

auiauj,=,5 c II { (QTBeE: + (Ej)TBCe:}rdrdz 
Q, I 

{QTil = 

where U is the global vector of the generalized displacements, Np is the total number of nodes of the 
discrete model, L& ] is a square symmetrical positive-definite matrix of the stiffness, N, is the total 
number of finite elements and {Qr } is the vector of the thermal loads. 

Note that when n = 0, the solution of the axisymmetric linear problem of thermoelasticity follows 
from relations (2.1)-(2.6). 

When analysing the heating of a cross-ply reinforced shell, considered as orthotropic, by virtue of 
relations (2.5) the problems of determining the coefficients u,(r, z) and w,&, z) (a = r, 8, z) in expansion 
(2.1), (2.3) are independent. This, of course, enables us to halve the dimension of the resolvents (2.6) 
but it eliminates the taking into account of the mutual influence of the different harmonic components 
of the stress-strain state, characteristic of the anisotropy itself [3]. 

When using an expansion of the temperature field only in cosines (@I = 0) instead of (2.2) the 
calculation using the orthotropy model leads to the occurrence of only the displacements u,(r, z) and 
the related strains e,p(r, z) and stresses o&r, z) (a, /3 = r, 0, z), which will be called the “fundamental” 
components of the stress-strain state. The contribution of the anisotropy, in addition to the change in 
the values of the “fundamental” components of the stress-strain state, is then characterized by the values 
of the “additional” displacement w,(r, z), the strains g&r, z) and the stresses t&r, z) (a, p = r, 8, z). 

The relations for the components of the vector Qr and of the matrix& of problem (2.6) were obtained 
in analytical form, which ensures the highest accuracy of the numerical solution within the framework 
of the formulation and approximation assumed (the use of numerical integration in problems of linear 
statics leads to a several-fold degradation of the convergence for individual cases). 

3. ANALYSIS OF THE EFFECT OF ANISOTROPY ON THE 
STRESS-STRAIN STATE OF A CROSS-PLY REINFORCED SHELL 

WHEN HEATED 

We will investigate the properties of the stress-strain using the example of a cylindrical shell consisting 
of two rigidly clamped layers of the same thickness H/2, unindirectionally reinforced at angles #‘I = 30 
and r(*) = -30”. Each layer of the shell is made of boroplastic. The mechanical characteristics of the 
structural components correspond completely to those assumed in [3, 6, 8, 91: Ef = 4.2 x lo5 MPa, 
vf = 0.21, E,,, = 3.5 x lo3 MPa, v,,, = 0.33 and a volume reinforcement coefficient \v = 0.5. The coefficients 
of linear expansion of the binding a, = 1.14 x lo-’ ‘C-l and of the fibres c+ = 8.25 x lo6 “C-’ are taken 
from [13, 141. The geometrical dimensions of the shell are the same as in [3, 6, 8, 91. 

In order to estimate the effect of anisotropy on the stress-strain state of cross-ply reinforced shells, 
as was done previously in [8], we specially considered the case of a macroscopically uniform orthotropic 
shell. To do this the components of the stiffness matrix and of the vector of the thermal expansions and 
shears (1.2), (1.5) of the physical Duhamel-Neumann relations, with adjacent layers having a different 
sign, were assumed to be equal to zero (as follows from the principle of averaging the values of the 
physical and mechanical characteristics over the volume) 
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73.9 
81 
87.7 

101 
104 

85.9 
56.6 

1 

! 
Table 1 

- - 
248 76.4 47.9 
451 155 100 
644 312 226 
599 316 290 
338 433 372 
200 425 318 

48.4 329 304 
43.3 1 209 1 189 

Table 2 

w; x lo4 v; x 10’ v; x 103 w; x 104 

163 263 313 - 
158 254 306 51.2 
144 229 284 101 

94 146 203 129 
66.4 101 151 121 
26.1 35.4 60.2 102 
16 17.6 31.4 96.5 

5.99 4.75 6.8 74.1 
3.29 2.39 3.42 39.1 

I 4 x 103 I u;(e*) x ld 
I 

128 149 -1.96 
118 140 -1.85 

58.2 82.6 -1.56 
38.9 58.8 -1.68 
14.9 25.1 -2.70 

4.44 9.92 -4.38 
1.66 4.62 -3.58 

c(ikg) = cg = 0, Bl.k4’ = @ = 0, j = 1,2,3 

(k) a12 = 0, af$ = 0, k = 1,2 

The calculation was carried out for the case when the shell was rigidly fastened at the ends z = 0 and 
z = L and for a temperature field which changed only in a circumferential direction, T = 1OOcosn~ "C 
over a range of variability of the load 0 2 y1 < 1.5. 

Such an elastic system is symmetrical in its geometry and fixing about the central section of the shell 
z = L/2 to the plane normal to its axis. In the tables and the figures, which represent the results of the 
calculation, the linear dimensions are in millimeters, the angular quantities are in degrees and the stresses 
are in megapascals. The continuous curve in the figures corresponds to the solution for an anisotropic 
shell, and the dashed curve is for an orthotropic shell. 

The maximum absolute values of the fundamental displacements v, and the additional displacements 
w, (a = 1,2,3) are shown in Table 1 (here and below the superscript a corresponds to an anisotropic 
shell while the superscript o corresponds to an orthotropic shell). As might have been expected, in view 
of the presence of non-zero constrained deformations of the tangential shear Ta12, the anisotropy mainly 
affects the values of the fundamental circumferential displacements u2 and deflections u3. The effect 
of the anisotropy manifests itself more strongly for y1 = 8 (in this case u~/u; = 1.78) and more weakly 
for II = O(u$/uz = 1.19). Essentially, as the load variability parameter increases (n > 10) the additional 
displacements w3 already exceed the fundamental bucklings u3. 

For axisymmetric loading (n = 0) the stress-strain state was calculated both using the method presented 
here and using the more accurate AAMS algorithm [5], taking the geometrical non-linearity into account. 
The differences between the linear and non-linear solutions amounted to less than 5% (which is fully 
explainable by the smallness of the coefficient of linear expansion of the extremely rigid filler). 

The maximum buckling u; for an orthotropic body, by virtue of expansion (2.3), corresponds to 
Cl = 0, which is not the case for an anisotropic shell, in each specific section of which the maximum 
buckling UT occurs for a quite definite angular coordinate 
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w “W/2) 

Fig. I 

Fig. 2 

In Table 2, for the section z = 0.2 L, in which the additional components of the displacements reach 
considerable values, we compare the maximum values of the bucklings in an orthotropic shell up and 
an isotropic shell us. For n > 10, when the additional displacements w3 are commensurable in value 
with the fundamental bucklings ‘u3, neglect of the anisotropy introduces an error into the calculated 
values of the bucklings of up to 100% or more. 

We carried out a further analysis for the case n = 8. 
In Fig. 1 we show the distributions of the fundamental and additional displacements of the middle 

surface of an anisotropic shell along the length (for an orthotropic shell the displacements have the 
same as u”,). For v2, v3, and w1 the central section is the plane of symmetry. The components w2, w3 
and q are antisymmetric about the same section. 

The distributions of the maximum bucklings of the middle surface of an orthotropic and an anisotropic 
shell along the length are shown in Fig. 2. Here the curve of 8* represents the twisting of the anisotropic 
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Fig. 3 

shell, when the line of maximum bucklings becomes a curve which does not coincide with the generatrix. 
This effect is clearly shown in Fig. 3, where, we show, relative to the plane of development of the fragment 
of the middle surface of the anisotropic shell in the region D: (0 I z/L 5 1, -rc/(2n) 5 8 5 rc/(2n)}, the 
form of its bucklings, which occur during thermal deformation. 

Considering the deformed cross-ply reinforced cylinder as a fine three-dimensional figure, we must 
point out the change in the properties of symmetry [15], which arises when anisotropy is taken into 
account. Whereas in the orthotropic formulation, the cylinder in the deformed state, as in the initial 
state, has a plane of symmetry, perpendicular to the cylinder axis and dividing it into two equal parts 
(the point of intersection of the cylinder axis in this plane {z = L/2, r = 0) is a singular point), when 
the anisotropy is taken into account there is only a second-order axis of symmetry, coinciding with the 
radial coordinate line drawn through the same singular point. 

The distributions over the thickness of all the components of the fundamental and additional stresses 
in anisotropic and orthotropic shells in sections where they take extremum values, are shown in Fig. 4 
for shear stresses, and in Fig. 5 for transverse stresses. Narrow zones, directly next to the clamping, 
where the elastic solution has local singularities, are excluded from consideration. In the sections 
considered the additional shear stresses &a (a, p = 1,2) are practically self-balancing over the thickness: 

H 

0 

It follows from the results obtained that the stresses !a~ and rap are close in absolute value and take 
maximum values in different sections along the mertdronal coordinate. This confirms that there are 
equal stresses over the whole volume of the cross-ply reinforced shell. 

For the “fundamental” components of the stress-strain state of orthotropic and anisotropic shells, 
the overall properties of symmetry about the central section of the shell z = L/2 are characteristic. 

v$+z) = q&z), a = 2,3; Q(;+z) = q&z) 

(11 a@ 22 .+ 33 .@ 23) (3.1) 

q;+g = -V&Z), @+z) = -T&Z) (13 ti 12) 



854 I? Ya. Nosatenko and Yu. Yu. Shirshov I? Ya. Nosatenko and Yu. Yu. Shirshov 

-50 0 ta 
Fig. 4 

For the “additional” components, due to the anisotropy, they are opposed 

w$+z) = -w~(~-z), a = 2,3; t,,(k+z) = -tll(i-z) 

(11 # 22 @ 33 @ 23) 

++g = +z), $+z) = f13($) (13 * 12) (3.2) 

Hence, the general properties of symmetry (3.1) and (3.2) established for the first time in [3] and 
discussed in detail in [8] for three-dimensional problems of force and kinematic non-axisymmetric 
deformation, also occur during heating. This enables us to use the geometrical and elastic symmetry 
for a numerical solution of three-dimensional problems of the mechanics of multilayer cross-ply 
reinforced shells in the case of complex thermal loading (when finding a solution in displacements in 
the plane of symmetry q = w2 =w3 = 0). 

4. CONCLUSIONS 

Summarizing the main results obtained in this paper and in [3,7,8], we point out the following general 
rules. 

1. Neglect of the anisotropy and of the three-dimensional nature of the stress-strain state leads to 
a considerable increase in the stiffness of multilayer reinforced shells. 

2. The more complex the phenomenon investigated, the more important the contribution of the 
anisotropy in estimating its fundamental characteristics (in the vibrations of a previously deformed shell 
this is a reduction and readjustment of the whole spectrum of elastic oscillations, while in problems of 
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1.0 

WH 

t*,(O. w 

0.5 

i 0 

Fig. 5 

statics this will be additional transverse-shear stresses, which will affect the strength of composite 
materials in a definite way). 

3. In all cases, non-axisymmetric deformation of anisotropic shells is accompanied by twisting of the 
shells, when the line of maximum bucklings becomes a curve which does not coincide with the generatrix. 
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